skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kelley, Melissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Few studies have examined the impact of heat stress on reproduction in Antarctic terrestrial arthropods, specifically how brief, extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the impact on fertility declines with time when the mites are allowed to recover under less stressful conditions, suggesting that the negative effects are transient. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial effects on local populations of Antarctic arthropods. 
    more » « less